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A study of the Bianchi I cosmological model is done from both the classical and 
quantum mechanical points of view. The field equations and their solutions are 
discussed in the classically forbidden region and classical region. Also the no- 
boundary wave function is evaluated using the concept of microsuperspace and 
the Hawking-Hartle proposal. 

1. INTRODUCTION 

This paper deals with the study of classical and quantum cosmological 
phenomena for the spatially homogeneous anisotropic Bianchi I space-time. 
The Einstein field equations are solved in both Euclidean and Lorentzian 
regions with boundary conditions based upon the no-boundary proposal of 
Hartle and Hawking. In addition, the Hamilton-Jacobi function is con- 
structed from the Euclidean action, which is the solution of the Euclidean 
field equations, by analytic continuation. These are discussed in Section 2. 
The wave function for the no-boundary proposal is evaluated in Section 3 
with the concept of microsuperspace. The path integral reduces to a single 
integration and is evaluated by the method of steepest descent. Different 
wave functions for different choices of the contour are found, and are given 
in tabular form. Therefore, the HH proposal does not lead to a unique wave 
function. 

2. BIANCHI I COSMOLOGICAL MODEL 

The spatially homogeneous metric ansatz in the Bianchi type ! model 
is (Louko, 1988) 

dS2=p2[-NZ(t) dt2+a2(t) dx2+b2(t) dy2+c2(t) dz z] (2.1) 
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The overall prefactor is t3  2 = G/27r z. The coordinates x, y, and z are dimen- 
sionless and are periodic with period 2rr. The surfaces of constant t have the 
topology of a three-torus. The minisuperspace variables a, b, e, and N are 
dimensionless quantities. 

In this section, we consider a massive scalar field q~ (t) in the above 
model. The corresponding action is (Louko, 1988) 

' = -  �89 f Nabc[-~5(~ k+~ h+d ca a-b-~2)+mZr 

= f L  dt (2.2) 

According to Hartle and Hawking (1983), due to inflation at early 
stages of evolution of the universe, the effective cosmological constant has 
to decay and finally vanish with the evolution of the universe, as our universe 
is not expanding exponentially today (Chakraborty, 1990a). Here the scalar 
field ~b is assumed initially very large and almost constant, i.e., 4)_ const = 
4)0 at the very early stages of the evolution and the mass term is taken as the 
effective cosmological constant (Esposito and Platania, 1988). This region is 
known as Euclidean or classically forbidden. The field equations in this 
region are 

b'+_c+_b C+N2Z=0 
b c bc 

"6+_d+_c a_" +N~s 0 
c a c a  

a" + b_"+ a_" b_" + Nzz = 0 
a b a b  

(2.3) 

and the constraint equation is 

 +N2Z= 0 
ab bc ca 

Here derivatives are with respect to Euclidean time r and Z =m2q~g. The 
solution of these field equations with the boundary conditions (Louko, 1988) 

c(0)=0, k(0)= 1, h(0)=b(0)=0 (2.4) 



Bianchi I Cosmological Model 305 

[(0) stands for r=0]  are 

a(v) =KI cos2/3((32)22Nv ) 

2/3((32@12N~ 
b( )=K2cos t ?- ) 

c(v)- 2 sin(_(3;~)22Nz)seci/3((3),~2Nr) 
(3&) 1/2 

(2.5) 

where K~, K2 are arbitrary constants. 
Now, according to the HH proposal, the ground-state wave function is 

a Euclidean functional integral taken over compact four-metrics and regular 
matter fields. So in the semiclassical approximation the wave function 
reduces to (Chakraborty, 1990a) 

~, = c exp(-Ie) (2.6) 

where/~ is the Euclidean action of the above solutions of the Euclidean field 
equations and is given by 

I e -  4~,/r~ T -  (2.7) 

with 

T~__ 21/3J{[1 ..t_ ( 1 _I._ c6/r t I/211/3 f// c6)t 3'~ 1/2 

In the classical region the wave function is oscillatory in nature and the 
WKB ansatz gives (Chakraborty, 1990a; Fang and Ruffin, 1987) 

~/= Re[c exp(iS)] (2.8) 

where we assume 

V2C - - < < ( V S )  2 
C 

So the prefactor varies slowly compared to the Hamilton-Jacobi function. 
The gradient of the HJ function gives the direction of the classical trajectories 
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in superspace (Chakraborty, 1990a). The analytic continuation of the 
Euclidean action is the choice of HJ function based on the Hartle-Hawking 
proposal and we have 

s~  ( - 4x/~ ~, T]' ~=mZ~b2 (2.9) 

The solutions of the Lorentzian field equations are also obtained from 
(2.5) by rotating the time axis as 

a( t) = 1s sinhZ/3(•t) 

b(t) = K2 sinh2/3(&) 
(2.10) 

c(t) = [2/(3~) */2] cosh(at) cosech'/3(at) 

q~ (t) = ~bo 

with ~ -- (3~,)1/2N/2. 
Now, the first integral of the system is (Esposito and Platania, 1988) 

~S 0L 0S OL 
P" ~a Nt' Pb Ob 0t~ 

c3S c3L OS t~L 
Pc-  ac 0~ ' PC' Od? t~  

where L is given by (2.2). These first-order differential equations are coupled 
and are complicated in form, so they cannot be solved exactly. Therefore no 
conclusion regarding Lorentzian trajectories is possible. 

3. NO-BOUNDARY WAVE FUNCTION USING 
MICROSUPERSPACE M O D E L  

The concept of microsuperspace was formed by HaUiwell and Louko 
(1989, 1990) using the recent study of Regge calculus (Regge, 1961) 
by Hartle (1989). In these models one is directly concerned with four- 
geometries, while minisuperspace models involve only three-geometries. 

The wave function of the universe for the no-boundary proposal of 
Hartle and Hawking (1983) is given by the path integral 

~t(h~ : f r  D(g~r) exp[--IE(gur) ] (3.1) 

where IE is the Euclidean action of the gravitational field with a cosmological 
constant. In this section the path integral will be evaluated using this concept 
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of microsuperspace for the metric ansatz in the Bianchi I model. The class 
of Euclidean four-metric is taken to obey the Bianchi I ansatz 

ds2=p2[N2(r) dr2+a2(r) dx2+b2(r) dy2+c2(r) dz 2] (3.2) 

The Euclidean version of the Einstein-Hilbert action with a positive cosmo- 
logical term for this metric is (Louko, 1988) 

1= L d r -  1 d (a6e) 

where the Lagrangian has the expression 

L = l  I - l  (al~k + b~d + cit') + 

(3.3) 

(3.4) 

(" =-d/dr). 
As in the path integral (3.1), F corresponds to a class of microsuper- 

space four-metric labeled by an arbitrary parameter (say r) (Chakraborty, 
1990b), so we consider the class of four-metrics (3.2) for which the scale 
factors have the expressions [see equation (2.5)] 

a(r) = KI cos2/3(Nr/r) 

b(r) = K2 cos2/3(Nr/r) (3.5) 

c(r) = r sin( Nr /r) secl/3(Nr /r) 

Inserting (3.5) into (3.3) and integrating, one finds that the action for this 
class of metric is 

where 

I(r, a, fl, 7/) = 12  ~ [-2 cos-4/3(N~'*/r) - 4  cos2/3(Nr*/r) 

(3.6) + 32r 2 cos-2/3(Nr*/r)] 

a=a ( r* ) ,  f l=b(r*),  7 = c ( r  *) (3.7) 

Let us define 

It = cos2/3 ( Nv* /r) (3.8) 

Then I in equation (3.6) simplifies to 

I(it, a, fl, 7) = (a~ /12) ( -2 / i t  2 - 4u + 3A.9,2/p) (3.9) 
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.,u- plane 
Fig. 1. The steepest-descent paths in the complex #-plane for positive cosmological constant. 
In this and the following figures, the arrows point downhill, and there is an essential singularity 
at p=0. 

Hence, according to the Hartle-Hawking proposal, the wave function given 
by the path integral now reduces to a single ordinary integration over p 
(Chakraborty, 1990b) 

~(a, /3 ,  7) = fr dp v(p, a, fl, y) exp[-I(p,  a, fl, y)] (3.10) 

where the contour F in the complex p-plane is such that (3.10) converges 
and v is a measure of integration. According to Halliwell and Louko (1989, 
1990), this measure may only affect the prefactor to some extent. 

The integration in equation (3.10) is now evaluated (with measure 
v =  1) by the saddle point method. So the path F now corresponds to 

Table I. The Wave Function Based on the HH 
Proposal in the Leading-Order Saddle-Point 

Approximation 

Contour Wave function 

HIJ exp(-h) exp(-il3) 
N M J  exp(-12) exp(+iI3) 

HIJMN exp(-Iz) cos(-I3 + 7r/4) 
LKJ exp(-ll ) 
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steepest-descent contours .  The  saddle points o f  the contours  are the roots  
o f  the cubic equat ion 

4/.t 3 + 3/1,)'2/2 - 4 = 0  (3.11) 

So we have one  real and two complex  saddle points  given by 

~, = (t +�89 (t_�89 

/x2 - - �89 + i~ /~  [ ( t  - �89 + ( t  + �89 (3.12) 

H3=_ �89  1 �9 ~ I 1/3 -- l%/~[(t-- ~) -I- ( t  + �89 '/3 ] 

with t =  (I + ,~3)'6/16)1/2/2. 

Also note  that  the integrand has an essential singularity at ~t = 0. Let  
11, I24-ii3 be the values of  the action at/~ = / l ,  and/~2,/.13, respectively, i.e., 

1i =/]~=~,,  I2 + iI3= ~u=u2, Iz-- iI3= l]u=m 

N o w  the steepest-descent paths are given by Ira(I) = const = I (at the saddle 
points) and are shown in Figure 1. Table I shows the expression for the 
wave function for different convergent contours. 

One may note that so far we have assumed that A is real and positive. 
Now if ,~ is taken to be negative (,t,= -0z ) ,  then one can obtain the same 
results as before provided 027/2< (16) 1/3 and t=  ( 1 -  06),6/16)1/2/2. 

Fig. 2. The 

A -LL 
E 

Im (3J) 

C 

? Re(~) 

.~- plane 
steepest-descent paths with negative cosmological constant (=-0  2 ) and 

0z~,2> (16) I/s" 
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Fig. 3. 

r 

- plane 
The steepest-descent paths in the limiting case 02r 2= (16) 1/3. 

F o r  0272>_(16) 1/3 , we have only real saddle points. In fact, for 
0272> (16) 1/3 there are three real saddle points given by 

0 0+27r /9+ 4~r 
- -  20y cos 20~,cos~, 20~,cos 3 ' 3 

with 

sec 0=  (0, ~,)3 

The convergent contours through these saddle points are given in Figure 2, 
The limiting case 07 =41/3 is shown in Figure 3. 

Thus, we obtain a similar conclusion to Halliwell and Louko (1989, 
1990) that the wave function based on the Hartle-Hawking proposal is not 
unique as it does not fix the contour. 
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